Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 26
Filter
Add more filters










Publication year range
1.
Ecol Evol ; 14(5): e11334, 2024 May.
Article in English | MEDLINE | ID: mdl-38694759

ABSTRACT

Animal trait data are scattered across several datasets, making it challenging to compile and compare trait information across different groups. For plants, the TRY database has been an unwavering success for those ecologists interested in addressing how plant traits influence a wide variety of processes and patterns, but the same is not true for most animal taxonomic groups. Here, we introduce ZooTraits, a Shiny app designed to help users explore and obtain animal trait data for research in ecology and evolution. ZooTraits was developed to tackle the challenge of finding in a single site information of multiple trait datasets and facilitating access to traits by providing an easy-to-use, open-source platform. This app combines datasets centralized in the Open Trait Network, raw data from the AnimalTraits database, and trait information for animals compiled by Gonçalves-Souza et al. (2023, Ecology and Evolution 13, e10016). Importantly, the ZooTraits app can be accessed freely and provides a user-friendly interface through three functionalities that will allow users to easily visualize, compare, download, and upload trait data across the animal tree of life-ExploreTrait, FeedTrait, and GetTrait. By using ExploreTrait and GetTrait, users can explore, compare, and extract 3954 trait records from 23,394 species centralized in the Open Traits Network, and trait data for ~2000 species from the AnimalTraits database. The app summarizes trait information for numerous taxonomic groups within the Animal Kingdom, encompassing data from diverse aquatic and terrestrial ecosystems and various geographic regions worldwide. Moreover, ZooTraits enables researchers to upload trait information, serving as a hub for a continually expanding global trait database. By promoting the centralization of trait datasets and offering a platform for data sharing, ZooTraits is facilitating advancements in trait-based ecological and evolutionary studies. We hope that other trait databases will evolve to mirror the approach we have outlined here.

2.
An Acad Bras Cienc ; 96(1): e20230063, 2024.
Article in English | MEDLINE | ID: mdl-38656053

ABSTRACT

Here we studied the entire Atlantic Forest hotspot to investigate whether the effect of different environmental predictors depends on the phylogenetic extension and the biogeographical history of different Atlantic Forest sectors. We used occurrence data of 3,183 plant species with arboreal or arborescent habits. We reconstructed climatic stability across 120,000 years using the Random Forest method. Then, we compared the effect of biogeographical history, topographic, and climatic variables on species richness and phylogenetic diversity using Geographically Weighted Regression (GWR) models. Niche conservatism drives the strength and direction of environmental correlates with tree diversity, interacting with the biogeographical and phylogenetic extension considered. Low current climate seasonalities were the main drivers of species richness and phylogenetic diversity variation across the Atlantic Forest. Whereas in higher phylogenetic extension, topographic heterogeneity increased the number of tree species independent of the sector, deep-past climate stability favored phylogenetic diversity by increasing relict lineages of distant clades in all forests, but with anomalies in the southern sector. This investigation yields substantial evidence that the response of the northern and southern sectors of the Atlantic Forest to identical environmental conditions diverges significantly, providing compelling support for the imprint of phylogenetic heritage in generating non-linear diversity patterns.


Subject(s)
Biodiversity , Phylogeny , Trees , Tropical Climate , Trees/classification , Forests , Brazil , Phylogeography
3.
Proc Biol Sci ; 291(2018): 20232522, 2024 Mar 13.
Article in English | MEDLINE | ID: mdl-38444337

ABSTRACT

Pesticides have well-documented negative consequences to control crop pests, and natural predators are alternatives and can provide an ecosystem service as biological control agents. However, there remains considerable uncertainty regarding whether such biological control can be a widely applicable solution, especially given ongoing climatic variation and climate change. Here, we performed a meta-analysis focused on field studies with natural predators to explore broadly whether and how predators might control pests and in turn increase yield. We also contrasted across studies pest suppression by a single and multiple predators and how climate influence biological control. Predators reduced pest populations by 73% on average, and increased crop yield by 25% on average. Surprisingly, the impact of predators did not depend on whether there were many or a single predator species. Precipitation seasonality was a key climatic influence on biological control: as seasonality increased, the impact of predators on pest populations increased. Taken together, the positive contribution of predators in controlling pests and increasing yield, and the consistency of such responses in the face of precipitation variability, suggest that biocontrol has the potential to be an important part of pest management and increasing food supplies as the planet precipitation patterns become increasingly variable.


Subject(s)
Ecosystem , Pesticides , Climate Change , Uncertainty
4.
Ecol Evol ; 14(2): e11047, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38380066

ABSTRACT

Although climate-based hypotheses are widely used to explain large-scale diversity patterns, they fall short of explaining the spatial variation among taxonomic groups. Integrating food web and metabolic theories into macroecology is a promising step forward, as they allow including explicit taxon-specific traits that can potentially mediate the relationship between climate and diversity. Our investigation focuses on the role of body size and trophic structure in mediating the influence of contemporary climate and historical climate change on global tetrapods species richness. We used piecewise structural equation modeling to assess the direct effects of contemporary climate and climate instability of species richness and the indirect effects of climate on tetrapod richness mediated by community-wide species traits. We found that birds and mammals are less sensitive to the direct effect of contemporary climate than amphibians and squamates. Contemporary climate and climate instability favored the species richness of mammals and amphibians. However, for birds and squamates, this link is only associated with contemporary climate. Moreover, we showed that community-wide traits are correlated with species richness gradients. However, we highlight that this relationship is dependent upon the specific traits and taxonomic groups. Specifically, bird communities with smaller bodies and bottom-heavy structures support higher species richness. Squamates also tend to be more diverse in communities with prevalence of smaller bodies, while mammals are correlated with top-heavy structures. Moreover, we showed that higher contemporary climate and climate instability reduce the species richness of birds and mammals through community-wide traits and indirectly increase squamate species richness. We also showed that body size and trophic structure are driving a global asymmetric response of tetrapod diversity to climate effects, which highlights the limitation to use the "typical" climate-based hypotheses. Furthermore, by combining multiple theories, our research contributes to a more realistic and mechanistic understanding of diversity patterns across taxonomic groups.

5.
Ecol Evol ; 13(4): e10016, 2023 Apr.
Article in English | MEDLINE | ID: mdl-37091571

ABSTRACT

Trait-based approaches elucidate the mechanisms underlying biodiversity response to, or effects on, the environment. Nevertheless, the Raunkiæran shortfall-the dearth of knowledge on species traits and their functionality-presents a challenge in the application of these approaches. We conducted a systematic review to investigate the trends and gaps in trait-based animal ecology in terms of taxonomic resolution, trait selection, ecosystem type, and geographical region. In addition, we suggest a set of crucial steps to guide trait selection and aid future research to conduct within and cross-taxon comparisons. We identified 1655 articles using virtually all animal groups published from 1999 to 2020. Studies were concentrated in vertebrates, terrestrial habitats, the Palearctic realm, and mostly investigated trophic and habitat dimensions. Additionally, they focused on response traits (79.4%) and largely ignored intraspecific variation (94.6%). Almost 36% of the data sets did not provide the rationale behind the selection of morphological traits. The main limitations of trait-based animal ecology were the use of trait averages and a rare inclusion of intraspecific variability. Nearly one-fifth of the studies based only on response traits conclude that trait diversity impacts ecosystem processes or services without justifying the connection between them or measuring them. We propose a guide for standardizing trait collection that includes the following: (i) determining the type of trait and the mechanism linking the trait to the environment, ecosystem, or the correlation between the environment, trait, and ecosystem, (ii) using a "periodic table of niches" to select the appropriate niche dimension to support a mechanistic trait selection, and (iii) selecting the relevant traits for each retained niche dimension. By addressing these gaps, trait-based animal ecology can become more predictive. This implies that future research will likely focus on collaborating to understand how environmental changes impact animals and their capacity to provide ecosystem services and goods.

6.
Infect Dis Poverty ; 12(1): 32, 2023 Apr 10.
Article in English | MEDLINE | ID: mdl-37038199

ABSTRACT

BACKGROUND: Neglected tropical diseases affect the most vulnerable populations and cause chronic and debilitating disorders. Socioeconomic vulnerability is a well-known and important determinant of neglected tropical diseases. For example, poverty and sanitation could influence parasite transmission. Nevertheless, the quantitative impact of socioeconomic conditions on disease transmission risk remains poorly explored. METHODS: This study investigated the role of socioeconomic variables in the predictive capacity of risk models of neglected tropical zoonoses using a decade of epidemiological data (2007-2018) from Brazil. Vector-borne diseases investigated in this study included dengue, malaria, Chagas disease, leishmaniasis, and Brazilian spotted fever, while directly-transmitted zoonotic diseases included schistosomiasis, leptospirosis, and hantaviruses. Environmental and socioeconomic predictors were combined with infectious disease data to build environmental and socioenvironmental sets of ecological niche models and their performances were compared. RESULTS: Socioeconomic variables were found to be as important as environmental variables in influencing the estimated likelihood of disease transmission across large spatial scales. The combination of socioeconomic and environmental variables improved overall model accuracy (or predictive power) by 10% on average (P < 0.01), reaching a maximum of 18% in the case of dengue fever. Gross domestic product was the most important socioeconomic variable (37% relative variable importance, all individual models exhibited P < 0.00), showing a decreasing relationship with disease indicating poverty as a major factor for disease transmission. Loss of natural vegetation cover between 2008 and 2018 was the most important environmental variable (42% relative variable importance, P < 0.05) among environmental models, exhibiting a decreasing relationship with disease probability, showing that these diseases are especially prevalent in areas where natural ecosystem destruction is on its initial stages and lower when ecosystem destruction is on more advanced stages. CONCLUSIONS: Destruction of natural ecosystems coupled with low income explain macro-scale neglected tropical and zoonotic disease probability in Brazil. Addition of socioeconomic variables improves transmission risk forecasts on tandem with environmental variables. Our results highlight that to efficiently address neglected tropical diseases, public health strategies must target both reduction of poverty and cessation of destruction of natural forests and savannas.


Subject(s)
Chagas Disease , Communicable Diseases , Animals , Humans , Ecosystem , Poverty , Zoonoses/epidemiology , Neglected Diseases/epidemiology , Neglected Diseases/parasitology
7.
Vet Parasitol Reg Stud Reports ; 30: 100693, 2022 05.
Article in English | MEDLINE | ID: mdl-35431063

ABSTRACT

Coatis are hosts of a great diversity of parasites, that due to anthropic pressures in forest fragments, like changes in landscapes and ecosystems, can influence the dynamics and physiological responses to those parasite infections, affecting the animal's health and fitness. This is the first study about health parameters and parasitic infections of wild coati (Nasua nasua) populations in the Atlantic Forest (Pernambuco Center of Endemism). The following hypotheses were evaluated: (i) infections and co-infections by gastrointestinal parasites and ectoparasites can generate changes in the health parameters of coatis such as the body condition score (BCS), packed cell volume (PCV), leukogram, and serum protein profile; (ii) biological aspects (sex and age) or fragment they inhabit, can influence changes in the health parameters (BCS, PCV, leukogram and serum protein profile). Were studied 55 free-living coatis in three anthropized forest remnants in the Metropolitan Region of Recife. After chemical containment, the animals were submitted to physical examination and collection of biological samples (blood, feces, and ectoparasites). On the physical examination, 23.6% of coatis had a low BCS and 5.4% were overweighted. Amblyomma spp. ticks were found in 83.6% of the animals of all studied remnants, A. sculptumAmblyomma sculptum in 12.7% and A. ovale in 1.8%. Regarding gastrointestinal parasites, Ancylostoma sp. was the most prevalent (80.4%) and most animals (66.7%) had co-infection with Ancylostoma sp. and Capillaria sp., Strongyloides sp., Acanthocephala, Cestoda, and Coccidia. The 76.5% of the coatis presented co-infections with Ancylostoma spp. + Amblyomma spp. Principal coordinates analyses (PCoA) scores of health parameters were used as dependent variables and fragment, sex, age, Ancylostoma sp. infection, gastrointestinal parasites co-infection, Amblyomma spp. infestation and co-infection of Ancylostoma sp. + Amblyomma spp. as a predictor variable in the linear models. Parasites did not influence the PCV of the individuals, but a decrease was evident in adult animals. Variations in protein profile, neutrophils, and lymphocytes, without leaving the normal range for the species, but WBC were predicted by age group, and infections by Ancylostoma or Amblyomma spp., but not their co-infections. The free-living coati populations of the anthropized remnants in the Atlantic Forest of northeastern Brazil proved to be healthy and seem to be adapted to face the challenges of anthropization and parasitic infections.


Subject(s)
Coinfection , Intestinal Diseases, Parasitic , Parasites , Procyonidae , Animals , Blood Proteins , Coinfection/epidemiology , Coinfection/veterinary , Ecosystem , Forests , Health Status , Intestinal Diseases, Parasitic/epidemiology , Intestinal Diseases, Parasitic/veterinary , Procyonidae/parasitology
8.
Glob Chang Biol ; 28(11): 3694-3710, 2022 06.
Article in English | MEDLINE | ID: mdl-35243726

ABSTRACT

Current climate change is disrupting biotic interactions and eroding biodiversity worldwide. However, species sensitive to aridity, high temperatures, and climate variability might find shelter in microclimatic refuges, such as leaf rolls built by arthropods. To explore how the importance of leaf shelters for terrestrial arthropods changes with latitude, elevation, and climate, we conducted a distributed experiment comparing arthropods in leaf rolls versus control leaves across 52 sites along an 11,790 km latitudinal gradient. We then probed the impact of short- versus long-term climatic impacts on roll use, by comparing the relative impact of conditions during the experiment versus average, baseline conditions at the site. Leaf shelters supported larger organisms and higher arthropod biomass and species diversity than non-rolled control leaves. However, the magnitude of the leaf rolls' effect differed between long- and short-term climate conditions, metrics (species richness, biomass, and body size), and trophic groups (predators vs. herbivores). The effect of leaf rolls on predator richness was influenced only by baseline climate, increasing in magnitude in regions experiencing increased long-term aridity, regardless of latitude, elevation, and weather during the experiment. This suggests that shelter use by predators may be innate, and thus, driven by natural selection. In contrast, the effect of leaf rolls on predator biomass and predator body size decreased with increasing temperature, and increased with increasing precipitation, respectively, during the experiment. The magnitude of shelter usage by herbivores increased with the abundance of predators and decreased with increasing temperature during the experiment. Taken together, these results highlight that leaf roll use may have both proximal and ultimate causes. Projected increases in climate variability and aridity are, therefore, likely to increase the importance of biotic refugia in mitigating the effects of climate change on species persistence.


Subject(s)
Arthropods , Animals , Biodiversity , Climate Change , Ecosystem , Plant Leaves
9.
Ecology ; 103(4): e3639, 2022 04.
Article in English | MEDLINE | ID: mdl-35060615

ABSTRACT

The construction of shelters on plants by arthropods might influence other organisms via changes in colonization, community richness, species composition, and functionality. Arthropods, including beetles, caterpillars, sawflies, spiders, and wasps often interact with host plants via the construction of shelters, building a variety of structures such as leaf ties, tents, rolls, and bags; leaf and stem galls, and hollowed out stems. Such constructs might have both an adaptive value in terms of protection (i.e., serve as shelters) but may also exert a strong influence on terrestrial community diversity in the engineered and neighboring hosts via colonization by secondary occupants. Although different traits of the host plant (e.g., physical, chemical, and architectural features) may affect the potential for ecosystem engineering by insects, such effects have been, to a certain degree, overlooked. Further analyses of how plant traits affect the occurrence of shelters may therefore enrich our understanding of the organizing principles of plant-based communities. This data set includes more than 1000 unique records of ecosystem engineering by arthropods, in the form of structures built on plants. All records have been published in the literature, and span both natural structures (91% of the records) and structures artificially created by researchers (9% of the records). The data were gathered between 1932 and 2021, across more than 50 countries and several ecosystems, ranging from polar to tropical zones. In addition to data on host plants and engineers, we aggregated data on the type of constructs and the identity of inquilines using these structures. This data set highlights the importance of these subtle structures for the organization of terrestrial arthropod communities, enabling hypotheses testing in ecological studies addressing ecosystem engineering and facilitation mediated by constructs. There are no copyright restrictions and please cite this paper when using the data in publications.


Subject(s)
Arthropods , Animals , Biodiversity , Ecosystem , Insecta , Plant Leaves , Plants
10.
Database (Oxford) ; 20212021 10 15.
Article in English | MEDLINE | ID: mdl-34651181

ABSTRACT

Spiders are a highly diversified group of arthropods and play an important role in terrestrial ecosystems as ubiquitous predators, which makes them a suitable group to test a variety of eco-evolutionary hypotheses. For this purpose, knowledge of a diverse range of species traits is required. Until now, data on spider traits have been scattered across thousands of publications produced for over two centuries and written in diverse languages. To facilitate access to such data, we developed an online database for archiving and accessing spider traits at a global scale. The database has been designed to accommodate a great variety of traits (e.g. ecological, behavioural and morphological) measured at individual, species or higher taxonomic levels. Records are accompanied by extensive metadata (e.g. location and method). The database is curated by an expert team, regularly updated and open to any user. A future goal of the growing database is to include all published and unpublished data on spider traits provided by experts worldwide and to facilitate broad cross-taxon assays in functional ecology and comparative biology. Database URL:https://spidertraits.sci.muni.cz/.


Subject(s)
Arthropods , Spiders , Animals , Databases, Factual , Ecosystem , Phenotype , Spiders/genetics
11.
Philos Trans R Soc Lond B Biol Sci ; 376(1837): 20200367, 2021 11 08.
Article in English | MEDLINE | ID: mdl-34538138

ABSTRACT

A robust understanding of what drives parasite ß-diversity is an essential step towards explaining what limits pathogens' geographical spread. We used a novel global dataset (latitude -39.8 to 61.05 and longitude -117.84 to 151.49) on helminths of anurans to investigate how the relative roles of climate, host composition and spatial distance to parasite ß-diversity vary with spatial scale (global, Nearctic and Neotropical), parasite group (nematodes and trematodes) and host taxonomic subset (family). We found that spatial distance is the most important driver of parasite ß-diversity at the global scale. Additionally, we showed that the relative effects of climate concerning distance increase at the regional scale when compared with the global scale and that trematodes are generally more responsive to climate than nematodes. Unlike previous studies done at the regional scale, we did not find an effect of host composition on parasite ß-diversity. Our study presents a new contribution to parasite macroecological theory, evidencing spatial and taxonomic contingencies of parasite ß-diversity patterns, which are related to the zoogeographical realm and host taxonomic subset, respectively. This article is part of the theme issue 'Infectious disease macroecology: parasite diversity and dynamics across the globe'.


Subject(s)
Anura/parasitology , Biodiversity , Host-Parasite Interactions , Nematoda/physiology , Trematoda/physiology , Animal Distribution , Animals , Parasites
13.
Oecologia ; 192(3): 745-753, 2020 Mar.
Article in English | MEDLINE | ID: mdl-32016526

ABSTRACT

Biotic and abiotic factors may individually or interactively disrupt plant-pollinator interactions, influencing plant fitness. Although variations in temperature and precipitation are expected to modify the overall impact of predators on plant-pollinator interactions, few empirical studies have assessed if these weather conditions influence anti-predator behaviors and how this context-dependent response may cascade down to plant fitness. To answer this question, we manipulated predation risk (using artificial spiders) in different years to investigate how natural variation in temperature and precipitation may affect diversity (richness and composition) and behavioral (visitation) responses of flower-visiting insects to predation risk, and how these effects influence plant fitness. Our findings indicate that predation risk and an increase in precipitation independently reduced plant fitness (i.e., seed set) by decreasing flower visitation. Predation risk reduced pollinator visitation and richness, and altered species composition of pollinators. Additionally, an increase in precipitation was associated with lower flower visitation and pollinator richness but did not alter pollinator species composition. However, maximum daily temperature did not affect any component of the pollinator assemblage or plant fitness. Our results indicate that biotic and abiotic drivers have different impacts on pollinator behavior and diversity with consequences for plant fitness components. Even small variation in precipitation conditions promotes complex and substantial cascading effects on plants by affecting both pollinator communities and the outcome of plant-pollinator interactions. Tropical communities are expected to be highly susceptible to climatic changes, and these changes may have drastic consequences for biotic interactions in the tropics.


Subject(s)
Pollination , Predatory Behavior , Animals , Flowers , Insecta , Plants
14.
Sci Data ; 7(1): 6, 2020 01 08.
Article in English | MEDLINE | ID: mdl-31913312

ABSTRACT

The use of functional information in the form of species traits plays an important role in explaining biodiversity patterns and responses to environmental changes. Although relationships between species composition, their traits, and the environment have been extensively studied on a case-by-case basis, results are variable, and it remains unclear how generalizable these relationships are across ecosystems, taxa and spatial scales. To address this gap, we collated 80 datasets from trait-based studies into a global database for metaCommunity Ecology: Species, Traits, Environment and Space; "CESTES". Each dataset includes four matrices: species community abundances or presences/absences across multiple sites, species trait information, environmental variables and spatial coordinates of the sampling sites. The CESTES database is a live database: it will be maintained and expanded in the future as new datasets become available. By its harmonized structure, and the diversity of ecosystem types, taxonomic groups, and spatial scales it covers, the CESTES database provides an important opportunity for synthetic trait-based research in community ecology.


Subject(s)
Biota , Animals , Biodiversity , Ecology , Plants
15.
Ecology ; 100(12): e02861, 2019 Dec.
Article in English | MEDLINE | ID: mdl-31380568

ABSTRACT

Habitat destruction is the single greatest anthropogenic threat to biodiversity. Decades of research on this issue have led to the accumulation of hundreds of data sets comparing species assemblages in larger, intact, habitats to smaller, more fragmented, habitats. Despite this, little synthesis or consensus has been achieved, primarily because of non-standardized sampling methodology and analyses of notoriously scale-dependent response variables (i.e., species richness). To be able to compare and contrast the results of habitat fragmentation on species' assemblages, it is necessary to have the underlying data on species abundances and sampling intensity, so that standardization can be achieved. To accomplish this, we systematically searched the literature for studies where abundances of species in assemblages (of any taxa) were sampled from many habitat patches that varied in size. From these, we extracted data from several studies, and contacted authors of studies where appropriate data were collected but not published, giving us 117 studies that compared species assemblages among habitat fragments that varied in area. Less than one-half (41) of studies came from tropical forests of Central and South America, but there were many studies from temperate forests and grasslands from all continents except Antarctica. Fifty-four of the studies were on invertebrates (mostly insects), but there were several studies on plants (15), birds (16), mammals (19), and reptiles and amphibians (13). We also collected qualitative information on the length of time since fragmentation. With data on total and relative abundances (and identities) of species, sampling effort, and affiliated meta-data about the study sites, these data can be used to more definitively test hypotheses about the role of habitat fragmentation in altering patterns of biodiversity. There are no copyright restrictions. Please cite this data paper and the associated Dryad data set if the data are used in publications.

16.
Oecologia ; 188(4): 1121-1132, 2018 Dec.
Article in English | MEDLINE | ID: mdl-30328529

ABSTRACT

Biodiversity and ecosystem functioning (BEF) research advocates that biodiversity loss has a drastic alteration on ecosystem functioning. However, studies have barely investigated how the evolutionary dependence of species traits affects EF. Here, we developed an integrated approach combining functional (FD) and phylogenetic diversity (PD) into a single space to disentangle the effects of diversity on leaf decomposition. We conducted an experiment manipulating plant leaves into litterbags containing four species (from a pool of 27) combined in four different treatments represented by low or high FD and PD; these treatments present different scenarios of trait evolution and, therefore, a treatment with high FD and low PD, for instance, mimics a community assembled by divergent trait evolution of close relatives. We found that leaf decomposition was 30% slower in pools with high FD and PD. We show species pool with higher FD and PD have non-additive effects on decomposition, which means there is a negative effect of mixtures combining species with great functional and evolutionary differences. In addition, interactive effects of PD and FD were more important to leaf decomposition than their isolated effects. Our results suggest that PD and FD have interactive effects on decomposition and represent different axes of ecosystem variation, indicating we should avoid using phylogenies as a proxy for functional diversity. We argue that future BEF experiments may alter their design by considering a multifaceted scenario investigating community effects on ecosystem functioning, and idiosyncratic effects of key traits which may determine community assembly and ecosystem processes.


Subject(s)
Biodiversity , Ecosystem , Phenotype , Phylogeny , Plant Leaves
17.
Mar Environ Res ; 136: 139-152, 2018 May.
Article in English | MEDLINE | ID: mdl-29510875

ABSTRACT

Community ecology has traditionally assumed that the distribution of species is mainly influenced by environmental processes. There is, however, growing evidence that environmental (habitat characteristics and biotic interactions) and spatial processes (factors that affect a local assemblage regardless of environmental conditions - typically related to dispersal and movement of species) interactively shape biological assemblages. A metacommunity, which is a set of local assemblages connected by dispersal of individuals, is spatial in nature and can be used as a straightforward approach for investigating the interactive and independent effects of both environmental and spatial processes. Here, we examined (i) how environmental and spatial processes affect the metacommunity organization of marine macroinvertebrates inhabiting the intertidal sediments of a biodiverse coastal ecosystem; (ii) whether the influence of these processes is constant through time or is affected by extreme weather events (storms); and (iii) whether the relative importance of these processes depends on the dispersal abilities of organisms. We found that macrobenthic assemblages are influenced by each of environmental and spatial variables; however, spatial processes exerted a stronger role. We also found that this influence changes through time and is modified by storms. Moreover, we observed that the influence of environmental and spatial processes varies according to the dispersal capabilities of organisms. More effective dispersers (i.e., species with planktonic larvae) are more affected by spatial processes whereas environmental variables had a stronger effect on weaker dispersers (i.e. species with low motility in larval and adult stages). These findings highlight that accounting for spatial processes and differences in species life histories is essential to improve our understanding of species distribution and coexistence patterns in intertidal soft-sediments. Furthermore, it shows that storms modify the structure of coastal assemblages. Given that the influence of spatial and environmental processes is not consistent through time, it is of utmost importance that future studies replicate sampling over different periods so the influence of temporal and stochastic factors on macrobenthic metacommunities can be better understood.


Subject(s)
Aquatic Organisms/chemistry , Biodiversity , Ecosystem , Geologic Sediments/chemistry , Weather
18.
Ecol Evol ; 8(24): 12615-12628, 2018 Dec.
Article in English | MEDLINE | ID: mdl-30619568

ABSTRACT

Mobbing represents a well-known anti-predatory behavior, where potential prey display aggressively against a predator. Despite considerable experimental and descriptive work, no models predict species participation in mobbing assemblages. Here, we aimed to understand why some bird species engage in this behavior, while others do not, and what factors can be used to predict mobbing engagement within an avian community. We investigated whether certain functional traits, such as body size, foraging guild, foraging mode, and strata, as well species abundance and evolutionary relatedness, are important mobbing predictors. To address these goals, we simulated the presence of the Ferruginous Pygmy-Owl (Glaucidium brasilianum) by broadcasting its voice in 230 experiments conducted in 115 points, systematically distributed in a dry forest of northeastern Brazil. We compared these results to 162 avian surveys (point counts) conducted in the same area. Our avian surveys detected 108 bird species (local avian community), whereas our playback experiments attracted 72 species (mobbing assemblage). In general, small, canopy insectivorous or frugivorous birds dominated the mobs. The best mobbing predictors were body mass and guild, whereas species abundance, foraging mode, and strata were not retained in the best models. We found a strong phylogenetic component in body mass and mobbing propensity (almost 90% of the species and individuals participating in the mobs were passerines). At the community level, we found significant differences in the functional and phylogenetic structure of the mobbing assemblage in relation to the avian community. Our results suggest that mobbing behavior is tightly associated with predation risk and the capacity of individual species to find and detect predators, and that functional and phylogenetic features can predict species participation in this complex animal behavior.

19.
Zookeys ; (621): 15-36, 2016.
Article in English | MEDLINE | ID: mdl-27833417

ABSTRACT

A new species of Charinus is described and illustrated from the Brazilian Atlantic Forest. Charinus ruschiisp. n. is found in Santa Lúcia reserve, Espírito Santo state, and is sympatric with Charinus brasilianus and Charinus montanus. The new species can be easily distinguished from the other species of the genus by the combination of the following characters: number of spines on the pedipalp tarsus, size and shape of the female genitalia, shape of the sternum and number of teeth in the cheliceral claw. The behavioral repertory is also described for this species based on five hours of qualitative and 24 hours of quantitative observations in order to define the behavioral categories. Five behavioral categories were detected and 21 behavioral acts. The most conspicuous category was Immobility, followed by Antenniform leg movement, Environmental exploration, Self-grooming, and Feeding. It was also found that juveniles spend longer time inside the shelter, even during peaks of adult activity, which could be related to a survival strategy.

20.
Ecology ; 97(10): 2705-2715, 2016 Oct.
Article in English | MEDLINE | ID: mdl-27859108

ABSTRACT

Habitat size and climate are known to affect the trophic structure and dynamics of communities, but their interactive effects are poorly understood. Organisms from different trophic levels vary in terms of metabolic requirements and heat dissipation. Indeed, larger species such as keystone predators require more stable climatic conditions than their prey. Likewise, habitat size disproportionally affects large-sized predators, which require larger home ranges and are thus restricted to larger habitats. Therefore, food web structure in patchy ecosystems is expected to be shaped by habitat size and climate variations. Here we investigate this prediction using natural aquatic microcosm (bromeliad phytotelmata) food webs composed of litter resources (mainly detritus), detritivores, mesopredators, and top predators (damselflies). We surveyed 240 bromeliads of varying sizes (water retention capacity) across 12 open restingas in SE Brazil spread across a wide range of tropical latitudes (-12.6° to -27.6°, ca. 2,000 km) and climates (Δ mean annual temperature = 5.3°C). We found a strong increase in predator-to-detritivore mass ratio with habitat size, which was representative of a typical inverted trophic pyramid in larger ecosystems. However, this relationship was contingent among the restingas; slopes of linear models were steeper in more stable and favorable climates, leading to inverted trophic pyramids (and top-down control) being more pronounced in environments with more favorable climatic conditions. By contrast, detritivore-resource and mesopredator-detritivore mass ratios were not affected by habitat size or climate variations across latitudes. Our results highlight that the combined effects of habitat size, climate and predator composition are pivotal to understanding the impacts of multiple environmental factors on food web structure and dynamics.


Subject(s)
Ecosystem , Food Chain , Animals , Brazil , Predatory Behavior
SELECTION OF CITATIONS
SEARCH DETAIL
...